

Evaluation of district heating alternatives in Beverina region

Jäneda, Estonia, 13 September 2012

Marika Rošā, Ekodoma Dagnija Blumberga

Scope of the study

- 1. The problems of district heating in Beverina region are multi-layered
- 2. It is due to the fact that there are parishes with totally centralised district heating system, partly decentralised and totally decentralised heating systems
- 3. The vision of the region 3Ss:
 - 1. Self-contained
 - 2. Self-served
 - 3. Self-managed
- 4. With the examples of the case study to start to solve the problems in the region

Existing situation

- 3546 inhabitants (2011.gadā)
- 3 parishes (Brenguļu, Trikātas un Kauguru) with 5 largest living areas – Brenguļi, Cempi, Trikāta, Mūrmuiža un Kauguri
- There are different problems in each parish

Individual heating - electricity and firewood

New buildings with heat pumps

Non-insulated public buildings

Shared ownership; 290 kWh/m² year

Large bills, few heat

Lack of energy management

Wood chip boiler house; efficiency 60%

Centralised DH; 70 kWh/m² year

Insulated, but not monitored

Activities to be implemented in the whole region

- 1. Boiler house of Mūrmuiža
- 2. Multi-family building "Lazdas" in Cempi parishe, where electricity is used for heating
- 3. Secondary school and sports hall of Trikāta

Existing situation in Mūrmuiža

Parameters	2010	2011
Capacity, MW	1	1
Consumption of wood chips, ber m ³		3000
Consumption of saw dust, ber m ³	3793	200
Heat energy (fuel), MWh	2503,4	2112
Produced heat energy, MWh	1508,79	1297,36
Calculated efficiency, %	60,2	61,4
Heat tariff, Ls/MWh (without VAT)	31,00	39,99

Energy consumers in Mūrmuiža

Alternatives

- Alternative A. Energy management program in the boiler house of Mūrmuiža.
- Alternative B. Replacement of boilers with more efficient boilers with deep flue gas cooling.
- Alternative C. Decentralization of the district heating system by installing wood pellet boiler next to each apartment building.

Approximate costs and savings of alternative A

Priority	Service	Costs, LVL	Potential economy, LVL/year	Implemen- tation
1	Consultations of specialists and salary for energy manager	2000 - 4000	2000 - 4000	09/2012
2	Purchase of measurement equipment and engineering service	5000 - 7000	2000 - 3000	10/2012
3	Installation of equipment	10000 – 15000	4000 - 5000	10/2013 un 10/2014

Solutions for alternative B

Solution 1 – installation of pellet boiler

Installation of totally automatised energy efficient (efficiency not lower than 88%) pellet boiler with installed capacity of 0.4 MW.

Solution 2 – installation of wood chip boiler with deep flue gas condensing

Installation of totally automatised energy efficient (efficiency not lower than 95%) wood chip boiler and deep flue gas condensing with installed capacity of 0.4 MW.

Solution 3 – installation of pellet and wood chip boiler with deep flue gas condensing

Installed capacity of the pellet boiler could be 200 kW and the same size wood chip boiler – 200kW. Installation of totally automatised energy efficient (efficiency not lower than 90%) pellet and wood chip boilers with installed capacity of 0.4 MW.

Solution 4 – implementation of innovative solutions at energy source, e.g. cogeneration

Cogeneration equipment with wood chip gasification generator and internal engine with total installed capacity of 0.3 MWe and 0.4 MWth

Approximate costs and payback time of alternative B

Solution	Equipment at energy source	Costs, LVL*	Payback time, years	Implementa- tion
1	Pellet boiler	40 000	10	09/2017
2	Wood chip boiler with deep flue gas condensing	50 000	7	09/2017
3	Pellet and wood chip boiler with deep flue gas condensing	60 000	10	09/2017
4	Cogeneration equipment	100 000	10	09/2019

* Costs and payback time are more qualitative parameters to present a comparison between different solutions as after 5 years these figures could change

- Conservation of centralised district heating system for multi-family buildings is important parameter to keep the constructions safe and to ensure comfort
- Therefore it is important to have a centralised system in each block house
- In case if after 5 years it is not economically and technically feasible to change the boiler house and refurbish DH network, it is necessary to assess alternative solutions

Multi-family building in "Lazdas" in Cempi parish

- Specific heat energy consumption 175 kWh/m² year
- Heating area 1089 m²
- Annual heat energy consumption 190.6 year
- Annual costs for heat energy 20470 Ls/year
- Specific heat energy costs 18.8 Ls/m² year

Savings and payback time for implementation of measures

Sa	vings component	Unit	Before		After	
Appush	oat oporav					
No	Measure			E)	(penses, l	.S
Centralisé	d heating system	Ls/MWh	107,4		35	
Anhual c	destallation of new centr	alisedheat	ing system		385000	
Sa¥ings	Installation of hot water	systayear	1	6620	12000	
3	Installation of district he	ating subst	ation		5000	
Total			34000			
Thermal insulation						
4. Thermal insulation of the building			120 000			
Energy source						
5.	Fully automated pellet	boiler wit	h capacity		2	0000
	70-100 kW (GRANDEG)*					
Total					17	4000

* In the case if it is not possible to install boiler in basement of the building, then additional investment (6000 Ls) to install container will be necessary.

Payback time is 10.5 years

Secondary school and sports hall of Trikāta

- School was built in 1938 and total heated area is 2318 m²
- Sport hall was built in 2005; heated area is 1075 m²
- Total electricity consumption in 2011 for heat pumps was 143.7 MWh/year;
- Total consumption of diesel oil in sports hall in 2011 was 6.5 t/year
- Total annual costs are 19600 Ls/year (prices of 2012)

Costs and payback time of alternatives

Alterna tive	Measure	Expenses, Ls	Payback time, years	Possible date of implementation
1	Implementation of energy management program	6000	2.0	09/2012
2	Implementation of energy management program and installation of pellet boiler in sports hall	23000	4.2	09/2013
3	Implementation of energy management program and installation of pellet boiler for base load	27000	3.9	09/2013

Thank you for attention!

"Ekodoma" Noliktavas street 3-3, Riga LV-1010

tālr.: +371 67323212 e-pasts: <u>ekodoma@ekodoma.lv</u> <u>marika@ekodoma.lv</u>

www.ekodoma.lv

18